Cocoa-flavanols enhance moderate-intensity pulmonary [Formula: see text] kinetics but not exercise tolerance in sedentary middle-aged adults.

School of Sport and Exercise Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK. Unilever Research & Development, Olivier van Noortlaan 120, 3133 AT, Vlaardingen, The Netherlands. School of Health Sciences, Liverpool Hope University, Liverpool, UK. School of Sport and Exercise Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK. D.Thijssen@ljmu.ac.uk.

European journal of applied physiology. 2021;(8):2285-2294

Abstract

INTRODUCTION Cocoa flavanols (CF) may exert health benefits through their potent vasodilatory effects, which are perpetuated by elevations in nitric oxide (NO) bioavailability. These vasodilatory effects may contribute to improved delivery of blood and oxygen (O2) to exercising muscle. PURPOSE Therefore, the objective of this study was to examine how CF supplementation impacts pulmonary O2 uptake ([Formula: see text]) kinetics and exercise tolerance in sedentary middle-aged adults. METHODS We employed a double-blind cross-over, placebo-controlled design whereby 17 participants (11 male, 6 female; mean ± SD, 45 ± 6 years) randomly received either 7 days of daily CF (400 mg) or placebo (PL) supplementation. On day 7, participants completed a series of 'step' moderate- and severe-intensity exercise tests for the determination of [Formula: see text] kinetics. RESULTS During moderate-intensity exercise, the time constant of the phase II [Formula: see text] kinetics ([Formula: see text]) was decreased by 15% in CF as compared to PL (mean ± SD; PL 40 ± 12 s vs. CF 34 ± 9 s, P = 0.019), with no differences in the amplitude of [Formula: see text] (A[Formula: see text]; PL 0.77 ± 0.32 l min-1 vs. CF 0.79 ± 0.34 l min-1, P = 0.263). However, during severe-intensity exercise, [Formula: see text], the amplitude of the slow component ([Formula: see text]) and exercise tolerance (PL 435 ± 58 s vs. CF 424 ± 47 s, P = 0.480) were unchanged between conditions. CONCLUSION Our data show that acute CF supplementation enhanced [Formula: see text] kinetics during moderate-, but not severe-intensity exercise in middle-aged participants. These novel effects of CFs, in this demographic, may contribute to improved tolerance of moderate-activity physical activities, which appear commonly present in daily life. TRIAL REGISTRATION Registered under ClinicalTrials.gov Identifier no. NCT04370353, 30/04/20 retrospectively registered.

Methodological quality

Publication Type : Randomized Controlled Trial

Metadata